Capitol Corridor
University of California
Capitol Corridor

Posts Tagged: forest

UC helps forest owners adapt to climate change

To help California forest property owners adapt to the changing climate, UC Agriculture and Natural Resources (UC ANR) has produced a 13-page peer-reviewed paper that outlines actions owners can take to sustain their forests' value even when temperatures rise.

“Managers of forest land have always had to adapt to changing conditions – such as markets, urban encroachment, droughts and floods,” said Susie Kocher, UC Cooperative Extension forestry and natural resources advisor. “We wrote this paper to help forest managers better understand the evolving science of climate change and how they can help their forests adapt to the climate of the future.”

Thinning trees in a mixed conifer forest is one way to improve its resiliency to climate change. (Photo: Will Suckow)

Forests are shaped by the climates in which they grow. The current rapid pace of climate change has not happened for thousands of years, according to climate scientists. Nevertheless, the authors assure forest landowners that there are land management decisions they can make to ensure the resiliency of their resources, and perhaps even improve them.

“Some trees may grow faster under the warmer conditions we experience with climate change,” Kocher said, “especially those at highest elevation where there is adequate precipitation.”

The paper details the solid scientific evidence that indicates the rise in global average temperatures over the past 100 years. The temperatures, it says, “will likely continue to rise in the future, with impacts on natural and human systems.”

The document provides specific recommendations for care of three common types of forest in California: mixed conifer, oak woodland and coastal redwood forests.

Oak woodland forests have moderate to high capacity to adapt to climate change. (Photo: Stephanie Drill)

Mixed conifer forests – typically composed of white fir, sugar pine, ponderosa pine, incense cedar and California black oak – are susceptible to moisture stress caused by warmer temperatures and reduced snow and rain. The drier conditions make the trees more vulnerable to fire and insect attack.

The drought of 2010-2016 has already had a substantial impact on mixed conifer forests in the Sierra Nevada. Aerial detection surveys show that more than 102 million trees have died since 2010; more than 62 million died in 2016 alone.

The UC ANR climate change adaptation paper suggests reducing competition for water by thinning trees and managing for species and structural diversity. The authors suggest property owners consider the source of seedlings when planting new trees.

“Select seedlings adapted to a slightly lower elevation or latitude than your property,” Kocher said. “These would be more likely to thrive under the 3- to 5-degree warmer temperatures we expect in 50 years or so.”

Oak woodlands are widely distributed and diverse in California, which gives them moderate to high capacity to adapt to climate change. Mature oaks are more resilient than young trees and seedlings.

One potential impact of climate change on oak woodlands is increasing precipitation variability and increasing spring rains. The moisture change could increase the spread and prevalence of Sudden Oak Death (SOD), a disease caused by a bacterium that was introduced into California from outside the U.S. SOD is primarily a concern in areas with tanoaks in Central to Northern California coastal areas.

“To reduce the spread of sudden oak death, land owners should prevent the movement of infected leaves, wood and soil,” according to the paper.

Fog frequency in California's redwood forests is significantly lower now than 100 years ago. (Photo: Jason Sturner, Wikimedia Commons.)

The primary concern for coastal redwood forests is the decline in fog. Fog frequency in coastal redwoods is 33 percent lower now compared to the early 20th Century. Less fog and rain plus warmer temperatures would leave coastal areas where redwoods typically thrive drier. But that doesn't mean redwoods will disappear. Areas with deep soil and areas close to streams and rivers may provide refuge for redwood forests.

The new publication, Adapting Forests to Climate Change, can be downloaded free from the UC ANR Catalog. It is the 25th in the Forest Stewardship series, developed to help forest landowners in California learn how to manage their land. It was written by Adrienne Marshall, a doctoral student at the University of Idaho; Susie Kocher, UC Cooperative Extension forestry and natural resources advisor; Amber Kerr, postdoctoral scholar with the UC John Muir Institute of the Environment; and Peter Stine, U.S. Forest Service.

Posted on Wednesday, April 5, 2017 at 9:22 AM
Tags: climate change (81), forest (19), Susie Kocher (22)

It's not too late to make California forests resilient to wildfire

Even though there has been a deficit of fire in California forests for decades, their future is not hopeless, said UC Berkeley fire science professor and UC Agriculture and Natural Resources researcher Scott Stephens in an interview with Craig Miller on KQED Science.

"The next 25 to 30 years are paramount. If you begin to do restoration, reduce density, make forests more variable in pattern, and less fuel, when you have episodes of drought and fire, it's going to be fine. The forests have been doing this for millennia. It's going to be fine," Stephens said.

UC researcher Scott Stephens shows fire scars on pines that reveal regular exposure to burns and then healing and regrowth, a sign of a healthy forest ecosystem. (Photo: Lindsey Hoshaw, KQED Science)

However, under current conditions, in which fires have been regularly suppressed, the situation is dire.

"The forests used to burn every 12 to 15 years, but most places haven't been touched for 50 to 100 years. Today we have areas with 300 or 400 trees per acre, where you used to have 50 to 80," he said.

Even though, Stephens said he is an optimist. "There's still opportunity today to do restoration, so that when it does get warmer and warmer, as projected, the forests will be able to deal with that, deal with insects and disease and keep themselves intact."

UC researcher Scott Stephens believes that with restoration, California forests will be fine. (Photo: Wikimedia Commons)

 

Posted on Tuesday, August 16, 2016 at 4:06 PM
Tags: forest (19), Scott Stephens (15), wildfire (124)

Public to weigh in on Sierra Nevada forest recommendations May 27

Pacific fisher
To protect forests and homes from wildfire, vegetation is often removed to reduce fuel for a fire. But how do those forest management treatments affect fire risk, wildlife, forest health and water?

Since 2006, a team of University of California Agriculture and Natural Resources scientists has been studying the effects of vegetation management in the Sierra Nevada forest on fire behavior, forest health, water quality and quantity, the Pacific fisher (a small mammal in the weasel family) and the California spotted owl. The researchers are writing up their final reports and seeking public feedback on their recommendations and next steps in the process.

On Wednesday, May 27, community members are invited to discuss the recommendations with the Sierra Nevada Adaptive Management Project (SNAMP) team at an all-day meeting in the Sacramento area.   

“Although adaptive management as a theory of practice in resource management has been in the literature for decades, few studies have been done to truly apply theory to actual practice,” said Susie Kocher, a UC ANR Cooperative Extension forestry and natural resources advisor for the Central Sierra area.

Spotted owls
“SNAMP was designed in an open and transparent process, engaging the public, agencies and land managers with the scientists,” said Kocher, who has encouraged public participation in the process.

The US Forest Service's 2004 Sierra Nevada Forest Plan Amendment calls for managing the 11 national forests in the Sierra Nevada using the best information available to protect forests and homes. SNAMP is designed to provide resource managers with research-based information for making forest management decisions.

The SNAMP meeting will be held 9 a.m. to 4 p.m. on May 27 at the Wildland Fire Training Center, 3237 Peacekeeper Way in McClellan (near McClellan Airfield outside Sacramento).

To attend, please register at http://ucanr.edu/snamp2015annualmeeting by Sunday, May 24. Registration is free.  

For more information about the project, visit http://snamp.cnr.berkeley.edu. The final SNAMP report will be available for download at http://snamp.cnr.berkeley.edu/snamp-final-report. Comments will be accepted online at http://ucanr.edu/snampreportcomments until July 15.

SNAMP participants view a treatment site in 2011
Posted on Friday, May 22, 2015 at 6:16 PM
Tags: forest (19), Pacific fisher (8), Sierra Nevada (8), SNAMP (11), spotted owl (2), Susie Kocher (22)

Fewer big trees found in today's forests

Forest study finds fewer big trees and an increasing number of small trees. (Photo of Tenaya Canyon in the Sierra Nevada from Wikimedia Commons.)
A study conducted by scientists from UC Berkeley, UC Davis, UC Cooperative Extension and the U.S. Geological Survey found that since 1930, the density of large trees in California has decreased, reported John Fowler of KTVU News Channel 2.

The story said scientists compared exquisitely detailed tree data collected in the 1920s and 1930s with tree surveys made between 2001 and 2010. They identified significant and rapid changes in basic forest structure. As large tree density fell across the state, and the density of small trees increased.

"The thing that I think is particularly worrisome is how widespread this is," said Maggi Kelley, UC Cooperative Extension specialist in the Department of  Environmental Science, Policy and Management at UC Berkeley. "These changes will have an impact on how animals use the forest, how fire moves through the forest and the way we view the forest."

"Our grandkids will definitely see a difference," she said.

The Los Angeles Times also covered the new research, which will be published in the Proceedings of the National Academy of Sciences.

LA Times reporter Taylor Goldenstein spoke to study co-author Mark Schwartz, a professor of environmental science and policy at UC Davis and director of the John Muir Institute of the Environment. Schwartz said a denser forest allows fire to travel faster, causing more devastation. After a fire, new, smaller trees grow that are more likely to catch fire, and the cycle continues.

“These are historically fire-maintained ecosystems,” Schwartz said. “The firemen are faced with this notion of when a fire is reported and started, do they go out and bring out helicopters, trucks and people and put the fire out or do they let it burn?”

Just how much the change in forest structure is due to fire suppression and how much results from climate change is hard to tell because the two are interrelated, Schwartz said.

National Geographic magazine invoked Peter, Paul and Mary's mournful ballad in its headline, "Where have all the big trees gone? They've gone to logging and housing - but especially to climate change."

Reporter Warren Cornwall wrote that no area was immune to the forests' decline, from the foggy northern coast to the Sierra Nevada mountains to the San Gabriels above Los Angeles.

The loss of big trees was greatest in areas where trees had suffered the greatest water deficit. Large trees in general appear to be more vulnerable to a water shortfall. Though the 2011-14 drought might have an impact on  forest change, it was not reflected in this study because the data was collected before the drought began.

Posted on Tuesday, January 20, 2015 at 2:01 PM
Tags: climate change (81), drought (162), forest (19), Maggi Kelly (7), Mark Schwartz (1), wildfire (124)

Coast redwoods increasingly susceptible to fire damage

Fire consumes a once-healthy California redwood tree. (photo: USFS)
California’s renowned coast redwood trees, previously believed to be fireproof, are now more than four times more susceptible to wildfire injury in coastal forest areas infested with the sudden oak death pathogen. These redwoods are now as susceptible to wildfires as other trees.

Millions of trees, including tanoaks, coast live oak, California bay laurels, and many other forest species have been killed by sudden oak death in coastal areas of central and northern California, and Oregon. The pathogen, Phytophthora ramorum, was first linked to the massive tree death in the mid-1990s.

David Rizzo, professor in the Department of Plant Pathology at UC Davis, and his research team are studying how the coastal forest ecology is changing since sudden oak death appeared, and why coast redwoods (Sequoia sempervirens) are subsequently so much more susceptible to fire.

It is the presence of the sudden oak death pathogen in forests that poses heavier fire risks for redwoods.

“If redwoods didn’t live in forests affected by the disease, they could withstand fires just fine,” says Margaret Metz, a postdoctoral research scholar working with Rizzo.

Professor David Rizzo, UC Davis.
An initial explanation for the higher redwood mortality following wildfires is heavier fuel loads (such as fallen, dead branches from tanoaks) in forests affected by sudden oak death. Tanoak, Notholithocarpus densiflorus, is the primary host dying from sudden oak death and the main source of pathogen inoculum.

According to Rizzo, “The disease likely created more fuel for wildfires as dead tanoak branches fell. The loss of the oaks also would have decreased the amount of shade, drying out the forest and turning it into a tinder box, one not even redwoods could survive.”

A real key, though, is the finding that dead tanoaks, still standing, carry flames high into tree canopies, scorching the crowns of adjacent redwood trees. It’s this crown injury that is believed to have caused so many redwood trees to die in a number of fires that occurred in 2008.

Dead tanoaks in a redwood forest in the scientists’ California study area, pre-fire. (photo: Kerri Frangioso/UC Davis)
“Humans are causing widespread changes throughout our world, including greater wildfires related to changing climate and from increasing infectious disease due to more modes of transportation,” said Sam Scheiner of the National Science Foundation, which funded some of this research.

Rizzo, noting that an increase in fire severity is resulting from climate change and global movement of species, says, “There may be all sorts of consequences, among them, dead and dying coast redwoods.”

Additional information:

  • California's iconic redwoods in danger from fire and infectious disease. National Science Foundation report on Rizzo group’s work, August 2013
  • The effects of sudden oak death and wildfire on forest composition and dynamics in the Big Sur ecoregion of coastal California. General technical report
  • Ecology research article, Ecological Society of America
  • California Oak Mortality Task Force website
Posted on Wednesday, September 4, 2013 at 7:21 AM

Next 5 stories | Last story

 
E-mail
 
Webmaster Email: kmchurchill@ucanr.edu