Capitol Corridor
University of California
Capitol Corridor

Posts Tagged: Dan Putnam

Madera farmer says feeding sprouted grain to sheep improves milk quality

Hydroponically grown sprouts at six days old. (Photo: Dan Putnam)
A Madera farmer is sprouting barley hydroponically inside shipping containers on his farm to produce feed for his sheep, reported Ezra David Romero on Valley Public Radio.

“I think that's a big advantage if you don't have a lot of land,” the farmer said. “You can produce a tremendous amount of feed in a very, very small area with a very little amount of water.”

However, UC Cooperative Extension alfalfa specialist Dan Putnam noted in the story that the system may not pencil out.

"If you really apply a little bit of economics to it and animal nutrition to it, it doesn't appear quite as promising as one might think," Putnam said.

There is no question that animals find the sprouted barely delicious. Online videos show cattle and horses "gobbling up sprouted grain like a vegetarian at a salad bar," Putnam wrote in a 2013 blog post that asked Does hydroponic forage production make sense? Things are not always as they seem. Animal ration calculations are based on dry matter since water is provided separately. 

"A feed with 90 percent water (such as sprouted grain) has considerably less 'feed value' than something with only 5 percent water (such as the grain itself), on a pound for pound basis," Putnam's blog post says.

Feeding sheep sprouted barley makes sense to Mario Daccarett, the owner of the Golden Valley Farm. He said cheese made from his sheep's creamy milk is sold in places like Whole Foods.

"They have our cheese there and they tell me that our Golden Ewe cheese is the best for grilled cheese sandwich ever, and they have over 500 different varieties of cheese there," Daccarett said.

The farmer feeds his sheep one part oats and hay and one part sprouted barley.

“You do the math and you say, 'Well, yeah, it might not work,' but once we started doing it we found out that sheep tend to eat less, more nutrition, more enzymes,” Daccarett said. “So they become more efficient.”

Posted on Friday, June 24, 2016 at 2:55 PM
Tags: Dan Putnam (12), hydroponic (1), sheep (9)

Drip irrigation in alfalfa cuts water use, but isn't for everybody

The drought is forcing farmers to reexamine the way they water their crops, but converting to drip irrigation in alfalfa is unlikely to be widely implemented, reported David Wagner on KPBS Radio News.

The drip irrigation system conserves water - almost by half, said farmer Jack Cato - but is expensive and requires regular maintenance. After six years, the drip system is yet to pay for itself.

"Drip irrigation is not the answer for everything," said Khaled Bali, irrigation advisor with UC Agriculture and Natural Resources (UC ANR). "I would not recommend switching every acre in the Imperial Valley to drip irrigation."

Cato added that new drip irrigation users face a steep learning curve.

"Whatever farm starts doing this, he needs to take baby steps," Cato said. "It's not something you learn overnight, or in a book. You have to study your fields daily."

For more on water use and alfalfa, see Why alfalfa is the best crop to have in the drought by Daniel Putnam, UC ANR Cooperative Extension specialist based at UC Davis, in the Alfalfa & Forage Blog.

Photo by Daniel H. Putnam, UC ANR alfalfa specialist.

 

Posted on Tuesday, July 7, 2015 at 4:28 PM
Tags: alfalfa (51), Dan Putnam (12), drought (162), Khaled Bali (10)

UC scientists helping farmers reduce water needs

Rain in December raised hopes for an end to the California drought, but storms have stayed away since the New Year began. January 2015 is shaping up to be the driest January since officials began keeping records 137 years ago, according to the National Weather Service.

California's continuing water crisis is leading to decreased and more variable water supplies for San Joaquin Valley farmers, and the region's forage production sector is being hit particularly hard.

“Corn silage and alfalfa have traditionally used lots of water and current and future water restrictions are forcing many farmers to rethink their forage production strategies,” said Jeff Dahlberg, UC Cooperative Extension specialist. “I know of one dairy that had to cut-off their summer irrigations of alfalfa to get their corn silage done.”

To help the agriculture industry make do with less water, a team of UC researchers began a long-term research project last year by growing alfalfa, sorghum and corn under a state-of-the-art center pivot irrigation system. The system, donated by industry partners, is installed at the UC West Side Research and Extension Center near Five Points. Reinke Inc. donated the center pivot, Senninger Irrigation donated nozzles, and Rain for Rent created the infrastructure that gets water and power to the 16-acre research plot.

“We see tremendous possibilities for overhead irrigation in cotton, alfalfa, corn, onions and wheat production,” said Jeff Mitchell, UC Cooperative Extension specialist and the project lead. “There is also great potential for overhead irrigation in California's $5 billion dairy industry for more efficiently producing feed crops like alfalfa, corn and sorghum.”

All aspects of production – including irrigation system performance, crop growth and development, weed control, water application, and economic viability – are being monitored by researchers from UC Cooperative Extension, Fresno State University and UC Davis, plus farmer cooperators and industry partners.

The primary focus of the study is comparing regular irrigation levels with regulated deficit irrigation, a system in which water is withheld at certain times in crop development in order to minimize crop losses even when water is short.

The overhead irrigation system allows researchers to make precise adjustments in water delivery.
“By controlling the speed of the pivot and by using special water application nozzles that apply precise and different amounts of water, we will get either full irrigation, three-quarters of the full amount or about half of the full irrigation quantity over the course of the season,” Mitchell said.

The researchers will apply small, precise amounts of water during the vegetative growth stage for sorghum and both immediately before and after monthly harvests and during the mid- to late-summer period for alfalfa when San Joaquin Valley productivity typically is reduced under flood irrigation.

“We expect to produce marketable and economic yields for sorghum using 25 percent less water as has been achieved under pivots in Texas and similar increases in crop water productivity for alfalfa,” Mitchell said. “This work will inform and improve future water management strategies in California.”

Overhead irrigation systems, such as center pivot systems, are the most prevalent form of irrigation nationwide; however, they have not been widely adopted in California to date. Recent technological advances in overhead irrigation – which allows integration of irrigation with global positioning systems (GPS) and management of vast acreage from a computer or smart phone – have boosted farmers' interest in converting from gravity-fed surface irrigation systems, which are still used on 5 million acres of California farmland.

The research is funded in part with a grant from the UC California Institute for Water Resources. In addition to Dahlberg and Mitchell, UC Cooperative Extension alfalfa specialist Dan Putnam and UCCE advisor in Fresno County Dan Munk are collaborators on the project.

An initiative to improve California water quality, quantity and security is part of the UC Division of Agriculture and Natural Resources Strategic Vision 2025.

The center pivot system at the UC West Side Research and Extension Center before crops were planted.
The center pivot system at the UC West Side Research and Extension Center before crops were planted.

Posted on Monday, January 26, 2015 at 9:20 AM
Tags: center pivot (1), Dan Munk (4), Dan Putnam (12), irrigation (22), Jeff Dahlberg (15), Jeff Mitchell (39)

New GMO alfalfa holds exciting possibilities, UC expert says

Growers can produce more nutritious alfalfa using new low-lignin variety, says UCCE's Dan Putnam.
Good news for dairy cows. Science has found a way to produce alfalfa with less lignin, a component of the plant that has no nutritional value. The new alfalfa variety – genetically modified in a way that puts brakes on the lignin-producing gene – was deregulated by USDA in November.

“In general, a reduced lignin trait in alfalfa is very welcome,” said Dan Putnam, UC Cooperative Extension specialist in the Department of Plant Sciences at UC Davis. “The low-lignin trait has some interesting potential implications for dairy cows and other ruminants, as well as for yield, agronomic efficiency, and even energy and water use efficiency.”

The new variety, called KK179, was developed by Forage Genetics International, Monsanto and the Nobel Foundation. Some of the field testing took place at UC Davis and the UC Intermountain Research and Extension Center in Tulelake, Calif.

KK179 differs from most other GMO agricultural crops in that the modification improves the plant quality. Other common modifications, such as glyphosate resistance and addition of a Bt gene, were designed to help with pest control.

Another difference is the source of the modified gene, Putnam said. In glyphosate-resistant (Roundup Ready) alfalfa, for example, the plant was modified by inserting a bacteria gene. Gene segments reducing lignin were derived from alfalfa itself.

Lignin is a fibrous part of cell walls in plants. It strengthens stems, helping the plant grow upright. However, its concentration in alfalfa is high compared to other forages, a drawback for what is considered the premiere forage of dairy cows.

“Farmers often try to cut early to reduce lignin,” Putnam said. “Unfortunately, yields are decreased by early cutting, often by many tons per acre. If growers were able to harvest later and still obtain good quality, yields would improve.”

That leads to the potential energy- and water-conserving aspects of the KK179 alfalfa.

“If growers reduce harvests by one each year and increase yields with no quality penalty, energy use would decline,” Putnam said. “Also, the amount of milk produced per unit of water used to grow the feed may be increased.”

KK179 won't be for everybody, Putnam cautions. Some export markets reject GMO technology, so growers should check whether their markets will accept alfalfa with the low-lignin trait. Another concern is the possibility of gene flow for farmers who grow alfalfa seed for organic production or export.

“Further research and experience by farmers and researchers are needed to fully understand the importance and implications of reduced-lignin alfalfa on farms,” Putnam said, “but this trait holds some very exciting possibilities.”

An initiative to enhance competitive and sustainable food systems is part of the UC Division of Agriculture and Natural Resources Strategic Vision 2025

Posted on Tuesday, December 16, 2014 at 8:13 AM
Tags: alfalfa (51), Dan Putnam (12), GMO (17)

Farmers dealing with unwelcome 'snow'

Toxins on the soil surface can look like snow.
Due to the lingering drought, farms in the San Joaquin Valley are being found with an unwelcome white dusting of "snow" on the soil surface. It isn't the snow so desperately needed in California's high country; rather it is salt and other toxins that have precipitated out of the soil because of sparse winter rains, reported Dennis Pollock in Western Farm Press.

At the recent California Plant and Soil Conference in Fresno, multiple speakers showed pictures of what they labeled "California snow," the article said.

Plant toxins like selenium, boron and salt leach out with water, but water is in short supply this year. "That's why a lot of land is fallow," said Gary Banuelos, USDA-ARS researcher in Parlier.

At the conference, Rick Snyder, UC Cooperative Extension specialist in the Department of Land, Air and Water Resources at UC Davis, said applying less water will reduce deep percolation and could result in higher salinity in the rooting zone. Eventually deficit irrigation will become problematic, especially if practiced over a longterm drought.

Snyder said it might be better to apply available water to a smaller area to maintain production. In the case of permanent crops, he suggested the same frequency of irrigation, but using less water with each application.

David Doll, UCCE farm advisor in Merced County, said almonds are sensitive to high levels of sodium, chloride and boron; and that some rootstocks are more tolerant of saline conditions than others.

Dan Putnam, UCCE specialist in the Department of Plant Sciences at UC Davis, said alfalfa may be capable of tolerating higher salt levels than previously thought.

Some degraded water that could not be used on food crops can be used on alfalfa, he said, adding that alfalfa is in higher demand than many other salt-tolerant plants. While salinity may trigger a decline in percentage of germinated seeds, Putnam said, “that doesn't scare us; we can live with a 40 percent level.”

Blake Sanden, UCCE advisor in Kern County, said there are research gaps with regard to soil toxin tolerance in pistachios.

However, he said, a buildup of boron in the soil is "a potential boron time bomb."

Sanden's research showed a doubling of total boron in the soil after nine years. Without 6 to 10 inches of rainfall or fresh water winter irrigation for leaching every one to two years, he said, high levels of boron could render pistachio production unsustainable.

Posted on Monday, March 17, 2014 at 10:40 AM
Tags: Blake Sanden (4), Dan Putnam (12), David Doll (26), drought (162), Rick Snyder (1)

Next 5 stories | Last story

 
E-mail
 
Webmaster Email: kmchurchill@ucanr.edu