Capitol Corridor
University of California
Capitol Corridor

Posts Tagged: Jeff Dahlberg

Future water leaders soak up irrigation information

University of California students are taking a long journey through California to trace the state's complicated and critical water supply. The recent graduates and upper-division co-eds from UC Merced, UC Santa Cruz, UC Berkeley and UC Davis are part of the UC Water Academy, a course that combines online training with a two-week field trip for first-hand knowledge about California water.

The tour began June 18 at Lake Shasta, the state's largest reservoir, and followed the water's course to the Sacramento Valley, through the Sacramento-San Joaquin Delta and south along the Delta-Mendota Canal. Since a key water destination is agriculture, the UC Water Academy toured the UC Kearney Agricultural Research and Extension June 23, where research is underway to determine how the state's water supply can be most efficiently transformed into a food supply for Americans.

Traveling in two vans, 10 students, a teachers' assistant and two professors are following the course of California water.

“You're visiting a place ideal for growing high-quality fruits and vegetables, because of the Mediterranean climate and low insect and disease pressure,” said Jeff Dahlberg, director of the UC KREC.

Kearney director Jeff Dahlberg leads a tour.

UC Cooperative Extension water management specialist Khaled Bali joined the students next to his alfalfa research plot, where different irrigation regimens are compared to determine the maximum yield that can be harvested with the minimum amount of water.

“It used to be that the No. 1 objective was to maximize yield,” Bali said. “But with the limited supplies and the cost of water, now the No. 1 objective is to get the maximum economic return. Growers might be better off selling some of their water to other jurisdictions.”

UCCE water management specialist Khaled Bali speaks about his alfalfa irrigation research.

A water tour wouldn't be complete without an introduction to drought research. A recently planted sorghum trial provided the backdrop.

“California is a great place to study drought tolerance,” Dahlberg said, “because you can induce a drought by withholding irrigation.”

UC Berkeley student Chelsee Andreozzi, right, asks a question while Tessa Maurer takes notes on a smart phone. UCB student Brian Kastl is in the background.

The sizable field contains 1,800 plots with 600 sorghum cultivars under three irrigation schemes: one irrigated as usual, one in which water is cut off before the plants flower, and the final one where water is cut off after the plants flower.

“Every week, a drone flies over to collect data on the leaf area, plant height and biomass,” Dalberg said. “Hopefully we will get associations with gene expression and this phenotype data."

Recently emerged sorghum that is part of a trial aiming to tease out the genes that express drought tolerance.

Dahlberg and his collaborating researchers believe identifying the genes responsible for drought tolerance in sorghum will help scientists find drought-tolerant genes in other cereal crops – such as wheat, corn, rice and millet. “This will go a long way to feeding the people of the world,” he said.

There is still much to learn about sorghum drought tolerance – is it conferred by the plant's waxy leaves, the way stomata are controlled, accumulation of sugar in the leaves, or a mechanism in the roots?

“These are all questions you will have to answer to feed the world,” Dahlberg said. “That's why I would encourage you to continue studying water. There's a lot for you to get into.”

Students gather in the post harvest laboratory at Kearney.

A third-year earth science student at UC Santa Cruz and a member of the academy, Denise Payan, said the sense of responsibility for the future is not daunting, but encouraging.

“It makes me feel like I can make a difference,” she said. The tour through California is shaping her plans for the future, which may include a career at the intersection of geology and biology.

“This has opened my eyes to a lot of issues,” she said.

The next stop for the UC Water Academy is the vast Tulare Lake basin to learn about groundwater recharge before heading east to the Owens Valley and the shores of Mono Lake. From there the academy turns to the Sierra Nevada to visit San Francisco's water supply, which is collected by Hetch Hetchy Dam. The field trip ends with a two-day rafting trip on the American River.

The UC Water Academy is offered through UC Water and led by UC Merced professor Joshua Viers and UC Cooperative Extension water management specialist Ted Grantham. In addition to the two-week tour, students participated in weekly online meetings and complete a project on communicating California water issues to public stakeholders. Students receive 1 unit of academic credit.

Posted on Friday, June 23, 2017 at 2:29 PM
Tags: Jeff Dahlberg (17), Khaled Bali (10), water (72)

The drought may be over, but water concerns haven't been doused

Record winter rainfall during the 2016-17 winter has enabled farms to emerge from survival mode in the short term, but scientists are still working hard to be ready for the next drought, reported Tim Hearden in Capital Press.

Hearden spent a day at the UC Kearney Agricultural Research and Extension Center in Parlier to learn how researchers at the facility and the UC West Side Research and Extension Center near Five Points are combining technology with management practices to put every drop of irrigation water to work.

Director of the UC Kearney REC, Jeff Dahlberg, said the facility is ideal for conducting drought research. (Photo: Evett Kilmartin)

“This is one of the few places in the world where you can do drought research on a field level,” said Jeff Dahlberg, director of the 330-acre Kearney facility. “What I'm planning is a world-class drought nursery.”

At the West Side REC, researchers are working with farmers to perfect micro-irrigation efficiency and test drought stress on the area's most prevalent crops.

“We'll grow a tremendous number of cultivars of a crop” and identify “what seem to be the most promising cultivars when you grow them under drought conditions,” said Bob Hutmacher, a cotton specialist and the center's director.

Overhead irrigation is one of the promising techniques being used in conservation agriculture systems.

Hearden spoke to Jeff Mitchell, UCCE cropping systems specialist and director of the Conservation Agriculture Systems Innovation center (CASI). CASI is encouraging farmers to adopt farming practices that save water, reduce dust and help improve the condition of soil, such as subsurface drip irrigation, overhead irrigation, minimum tillage, cover crops and crop residues. 

“This is not done right now in California,” Mitchell said. “In the future, there may be a strong likelihood of certain agricultural sectors adopting these practices.”

UCCE irrigation specialist Khaled Bali said underground drip systems in alfalfa fields have achieved 20 to 30 percent more yields while in some cases using 20 percent less water. (Photo: Evett Kilmartin)

Other subsurface irrigation trials are showing dramatic increases in yields. Khaled Bali, an irrigation water management specialist at Kearney, said underground drip systems in alfalfa fields have achieved 20 to 30 percent more yields while in some cases using 20 percent less water.

Kevin Day, a UCCE pomology advisor in Tulare County, is trying subsurface drip in a peach and nectarine orchard after working with the USDA to use it for pomegranates. He's seen as much as a 90 percent reduction in weeds because there's no surface water to feed them.

“Fewer weeds, fewer pesticides,” he said. “We use high-frequency irrigation. We irrigate as the crop needs it. When you do that, you keep the roots deeper, which makes for better aeration.”

Posted on Thursday, May 18, 2017 at 11:00 AM

Historical tea research may spark new industry in the San Joaquin Valley

Tea that was planted 50 years ago at the UC Kearney Agricultural Research and Extension Center may revive interest in growing the popular beverage in the San Joaquin Valley, reported Dale Yurong on ABC30 Action News. The reporter visited the 330-acre ag research facility Jan. 2 to get a first-hand look at what center director Jeff Dahlberg calls a "beautiful hedge."

In fact, the 13 landscape shrubs represent the best tea cultivars grown at Kearney when Lipton Tea was funding research to determine whether the Valley soils and climate could support production of plants to be used to manufacture instant tea. Today, a new trend is clearly brewing, Yurong said.

"Folks can't get enough tea," he said.

A researcher at UC Davis, who learned of the tea plants from documents stored by the campus' new Global Tea Initiative, was surprised to learn that the 50-year-old tea plants have survived and thrived. UC Davis chemistry professor Jacquelyn Gervay-Hague plans to study the soil where tea is growing to learn about the impact microbes in the rootzone may have on the health attributes of brewed tea. 

Dahlberg has looped in the small-scale farm advisor for UC Cooperative Extension in Fresno County, Ruth Dahlquist-Willard, to research tea production at Kearney.

"I think (tea) does have potential for some high-value tea products," he said. "And I can really envision some small farmers getting involved in this."

Jeff Dahlberg, left, and Jacquelyn Gervay-Hague stand in front of tea plants in a landscape border at Kearney.

Read more about the tea at Kearney here.

 

 

Posted on Tuesday, January 3, 2017 at 2:16 PM
Tags: Jeff Dahlberg (17), tea (1)

Organic symposium proceedings now available

Summaries of presentations from the 2016 Organic Agriculture Research Symposium (OARS) held in Pacific Grove are now available online at http://eorganic.info/node/16778. Many of the workshops and keynote presentations were recorded live and may be viewed via the eOrganic YouTube channel.

Ten acres at Kearney are set aside for organic research.
The event, which was co-sponsored by the Organic Farming Research Foundation and UC Kearney Agricultural Research and Extension Center, covered topics ranging from soil health, seeds, plant breeding, and biological control, to biodiversity, economics, and livestock — all with a focus on organic production.

“We are making these presentations available free online to extend the reach of all the valuable information shared at the symposium,” said Jeff Dahlberg, director of the UC Kearney Agricultural Research and Extension Center. “We're now planning the 2017 symposium and it will build on the cutting edge research shared by scientists this year.”

In the opening address, president of Organics International, André Leu, said organic agriculture offers the promise of a future to produce and distribute food and other farm products in a healthy, economically sound, truly sustainable and fair way. He called the current state of organic agriculture “Organic 3.0.”

“This is a concept we put out a year ago and it is resonating around the world,” Leu said. Organic 1.0 dates back to the 1920s and represents organic farming founders and visionaries, he said. Organic 2.0, beginning in the 1970s, represents the establishment of private standards, public regulations and global recognition. The current stage of organic farming is a time for market reinvention, widespread conversion and performance improvement.

Financial support for the 2016 OARS was provided by the USDA National Institute for Food and Agriculture Organic Research and Extension Initiative and the Gaia Fund.

"The OARS conference was very successful in bringing national and international scholars and farmers together to present findings about the latest research and how it is advancing organic farming and ranching," said Diana Jerkins, OARF research director. "OFRF will continue to encourage and participate in events such as these to ensure current research, education, and extension efforts are widely disseminated."

Organic Farming Research Foundation is a non-profit foundation that works to foster the improvement and widespread adoption of organic farming systems. OFRF cultivates organic research, education, and federal policies that bring more farmers and acreage into organic production.

The UC Kearney Agricultural REC is one of nine UC Agriculture and Natural Resources research and extension centers across the state of California. Ten acres at the 330-acre center are certified organic and available for organic research.

Posted on Monday, July 18, 2016 at 10:31 AM
Tags: Jeff Dahlberg (17), Kearney (4), Organic (25)

Invasive superweed Johnsongrass is the target of a new nationwide research effort

A team of researchers has received a $5 million grant from the U.S. Department of Agriculture to find new ways to combat Johnsongrass, one of the most widespread and troublesome agricultural weeds in the world.

“Johnsongrass is a huge problem,” said Jeff Dahlberg, UC Cooperative Extension sorghum specialist and director of the UC Kearney Agricultural Research and Extension Center in Parlier, Calif. “It impacts many different crops and is very hard to control.”

Dahlberg is part of the team that includes scientists from Virginia, Kansas, North Carolina, Texas and Georgia. Andrew Paterson, director of the Plant Genome Mapping Laboratory at the University of Georgia, Athens, is the lead investigator.

Johnsongrass, one of the most troublesome weeds in the world, is closely related to sorghum, which is grown for food, fodder and biofuel.
Native to the Mediterranean region, Johnsongrass has spread across every continent except Antarctica. It was introduced to the U.S. in the 1800s as a forage crop, but it quickly spread into surrounding farmland and natural environments, where it continues to cause millions of dollars in lost agricultural revenue each year, according to the USDA.

The naturalization of Johnsongrass across much of the U.S. has also allowed the plant to develop attributes — such as cold and drought tolerance, resistance to pathogens and the ability to flourish in low-fertility soils — that make it particularly difficult to control. Adding to the challenge is the adoption of herbicide-resistant crops around the world.

“Herbicide-resistant crops have been associated with a dramatic increase in herbicide-resistant weeds,” Patterson said. “With 21 genetically similar but different types of Johnsongrass known to be resistant to herbicides, it will only become more problematic in the future.”

Over the course of their five-year project, the researchers will work to better understand the weed's capabilities and the genes that make Johnsongrass so resilient. Johnsongrass [Sorghum halepense] is closely related to sorghum [Sorghum bicolor (L.) Moench], a healthy gluten-free grain, animal feed and biofuel crop. Lessons learned from the Johnsongrass research may lead to strategies to improve sorghum.

For his part, Dahlberg plans to use the global information system (GIS) to map the locations of Johnsongrass in California to better record its distribution in the state and to help understand how it spread into California by relating it to other populations of johnsongrass in the U.S.

“Ideally, we will use an app to map, identify, manage, and catalog populations that have developed different traits – such as susceptibility to plant disease, ability to host a particular insect, or resistance to herbicides,” he said.

This information may lead to new management strategies that target and curb its growth, providing farmers with more options to combat the invasive plant. The researchers also hope that learning more about the fundamental structures that give Johnsongrass its unusual resilience will pave the way for new genetic tools to improve useful plants, such as sorghum.

Other researchers working on this project are Jacob Barney, Virginia Tech; C. Michael Smith, Kansas State University; Wesley Everman, North Carolina State University; Marnie Rout, University of Texas, Temple; and Clint Magill and Gary Odvody, Texas A&M University.

Posted on Friday, March 4, 2016 at 8:28 AM
Tags: Jeff Dahlberg (17), Johnsongrass (1), sorghum (11)

First storyPrevious 5 stories  |  Next 5 stories | Last story

 
E-mail
 
Webmaster Email: kmchurchill@ucanr.edu